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Review of Computation for RNA-Seq Studies: 
Development and Improvement 

 

A comprehensive picture of the transcriptome – the identity and amount of each individual RNA 
molecule, for each cell type and state has been a holy grail for biologists working on a wide range of 
topics. For example, analysis of the transcriptome of embryos provide new information about molecular 
mechanisms underlying cell differentiation and organism development [1]; transcriptome of cancer cells 
extend our understanding of carcinogenesis [2] and hopefully assist in selecting drug targets. 

RNA-seq (RNA Sequencing) is the technique that reveals the sequences and quantities of the RNA 
present in the sample, allowing subsequent computational analysis to reconstruct the transcriptome. A 
typical RNA-seq experiment is illustrated in the diagram below. In this schematic, mRNA (Poly(A)+) is 
used as an example; however, in general a total ensemble of RNA (including mRNA, rRNA, tRNA and 
other non-coding RNA) can be fragmented into short sequences (200-500bp) and converted into a library 
of complementary DNA (cDNA). The DNA fragments are then attached to adaptors and rendered to high-
throughput sequencing [4]. Variable methods in library construction creates different biases, complicating 
the analysis of the sequencing results [5]; an ideal approach should be capable of directly reading each 
individual RNA sequence, long or short. However, this review will only focus on the computational 
techniques and challenges after acquiring the short sequence reads using the current approaches. 
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Computational analysis in RNA-seq 
The analysis pipeline of RNA-seq is summarized in the diagram below. Providing that a reference 
genome (or transcriptome) is pre-existent, short sequencing reads usually need to be mapped to the 
reference in the first place. However, short reads can undergo de novo assembly too, which will be 
described later. The aligned reads are then assembled to reconstruct the transcriptome. Note that besides 
the short reads, RNA-seq also generates read count data, from which transcript expression levels can be 
estimated. Normalizing and quantifying expression values will be followed by statistical analyses that 
assign significance to differential expression levels.  
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Burrows-Wheeler transform. (a) The Burrows-Wheeler matrix and transformation for 
'acaacg'. (b) Steps taken by EXACTMATCH to identify the range of rows, and thus the set of reference 
suffixes, prefixed by 'aac'. (c) UNPERMUTE repeatedly applies the last first (LF) mapping to recover 
the original text (in red on the top line) from the Burrows-Wheeler transform (in black in the rightmost 
column). 

Adapted from Langmead et al. Genome Biology 2009 10:R25 

1.  Read mapping 
 
Aligning reads to a reference genome or transcriptome resembles classic alignment problems. 
However, the short RNA-seq reads make the sequencing error rate, the genuine differences 
between reference and query organisms, and the RNA spanning exon-exon junctions more 
considerable. Currently RNA-seq read mapping approaches can be classified into two categories: 
“unspliced read aligners”, which align reads to reference without allowing large gaps, and 
“spliced aligners”, which aligning reads to the entire genome permitting large gaps for intron-
spanning reads.  
 
Bowtie alignment program [6] uses “Burrows-Wheeler transform methods” - one of the two main 
algorithms for “unspliced read aligners”, to index the reference genome, as shown below. Such 
Burrows-Wheeler transform allows large texts to be searched with economic memory footprint. 

Bowtie further introduces some extensions such as a backtracking algorithm to allow sequencing 
errors or genetic variations, and a “double indexing” strategy to prevent over-backtracking. 
Alternatively, “seed methods” are used by another set of match finding programs, such as MAQ 
[7] and Stampy [8]. In these methods, reads are broken down into shorter subsequences – “seeds”, 
assuming that at least some seeds are matched perfectly to the reference, to reveal candidate 
mapping regions. Afterwards, other alignment methods, such as Smith-Waterman are used to 
extend the alignments.  
 
Compared to “seed methods”, “Burrows-Wheeler transform methods” are generally faster when 
the exact reference is available. However, when only an imprecise reference (for instance, a 
genome of a distant species) is available, “seed methods” turn out more sensitive, yielding more 
aligned reads. The table below shows comparison of unspliced Seed (Stampy) and Burrows-
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Exon-first methods (a) map full, unspliced reads (exonic reads), and remaining reads are divided into smaller pieces and mapped to 
the genome. An extension process extends mapped pieces to find candidate splice sites to support a spliced alignment. Seed-and-
extend methods (b) store a map of all small words (k-mers) of similar size in the genome in an efficient lookup data structure; each 
read is divided into k-mers, which are mapped to the genome via the lookup structure. Mapped k-mers are extended into larger 
alignments, which may include gaps flanked by splice sites. 

Adapted from Nature Methods 8,469–477(2011) [3] 

 

 

wheeler (BWA) aligners for mapping reads to both the mouse and rat transcriptome consisting of 
8,557 genes expressed in mES that have a rat ortholog. 
 
 
 
 
 
 
 
 
 
The unspliced read aligners are specialized at identifying known exons and isoforms; however, 
they are not able to identify novel splicing events, which require reads to be spliced and aligned 
separately. “Seed methods” can actually be adapted into a “spliced aligner”. Seeds from the same 
read can be placed onto different regions onto the genome. The subsequent extension and 
merging of extended seeds will determine the full spliced alignment for the read [9]. Another 
common algorithm of “spliced aligners” is the “exon first” method, including two steps. Firstly, 
the complete reads are mapped to the reference with “unspliced read aligners”. Secondly, the 
remaining unmapped reads are broken down into shorter segments and mapped independently, 
revealing the spliced points [10].  
 
Since the “exon first” strategy requires to steps, in which the reads succeeding in unspliced 
alignment will not go through the second step of spliced aligning, spliced alignments of reads that 
can also be mapped to the genome contiguously will be missed. In contrast, “seed methods” 
evaluate spliced and unspliced alignments at the same time, and thereby the bias toward unspliced 
alignments is prevented. 
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(a) Spliced and unspliced reads. Unspliced reads (black bars) fall within a single exon, whereas spliced reads (bars broken into 
'dumbbells') span exon–exon junctions (thin horizontal lines connect the alignment of a read to the exons it spans). (b) Shown 
are transcripts from two different genes (blue and red boxes). The grayscale vertical shading in subsequent panels is shown for 
visual tracking. (c) Spliced reads. (d) Connectivity graph construction. Scripture builds a connectivity graph by drawing an edge 
(curved arrow) between any two bases that are connected by a spliced read gap. (e) Path scoring. Scripture scans the graph 
with fixed-sized windows and uses coverage from all reads (spliced and unspliced; bottom track) to score each path for 
significance (P-values shown as edge labels). (f) Transcript graph construction. Scripture merges all significant windows and 
uses the connectivity graph to give significant segments a graph structure (three graphs, in this example). (g) Refinement with 
paired-end data. Scripture uses paired-end (dashed curved lines) to join previously disconnected graphs (gene 1, bold dashed 
line), find breakpoint regions within contiguous segments (detectable in this example by the lack of dashed lines between 
genes 1 and 2) and eliminate isoforms that result in paired-end reads mapping at a distance with low likelihood. 

2. Transcriptome reconstruction 
 
After the short reads from RNA-seq are mapped onto the reference genome, a graph will be built 
to represent closely adjacent/overlapping reads for each genomic locus. Traversing the graph will 
finally combine the connected exons into transcriptional units, determining the isoforms, 
revealing novel transcripts, and reconstruct the complete transcriptome. 
 
Scripture is a method developed upon “spliced aligners”. Two bases will be connected if they are 
immediate neighbors either in the genomic sequence or within a short sequencing read. Reads 
covering overlapping locus will be clustered to generate a connectivity graph. Then both spliced 
and unspliced reads will be used to identify paths in the connectivity graph [11].  
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(a) The algorithm takes as input cDNA fragment sequences that have been 
aligned to the genome by software capable of producing spliced alignments, 
such as TopHat. The first step in fragment assembly is to identify pairs of 
'incompatible' fragments that must have originated from distinct spliced 
mRNA isoforms (b). Fragments are connected in an 'overlap graph' when 
they are compatible and their alignments overlap in the genome. In this 
example, the yellow, blue and red fragments must have originated from 
separate isoforms, but any other fragment could have come from the same 
transcript as one of these three. Isoforms are then assembled from the 
overlap graph (c).  

Cufflinks [12] is another program for transcript discovery and transcriptome reconstruction. 
Reads aligned across splice junctions are taken in and clustered based on the genomic loci onto 

which they are mapped. Compatible 
fragments will be connected in the 
overlap graph and merged into 
complete isoforms, whereas those 
incompatible reads must be 
originated from distinct spliced 
isoforms. Cufflinks implements 
Dilworth's Theorem (the number of 
mutually incompatible reads is the 
same as the minimum number of 
transcripts needed to 'explain' all the 
fragments) and produces a minimal 
set of paths covering all fragments in 
the overlap graph by finding the 
largest set of reads in which no two 
could have originated from the same 
isoform.  

 
Scripture and Cufflinks differ 
majorly in graph construction and 
traversal methods. Cufflinks is more 
conservative in its choice of which 
transcripts to re-construct, since it 
sticks to “the minimum number of 
transcripts”; whereas Scripture may 
produce a larger set of transcripts for 
the same genomic region.  

 
Both Scripture and cufflinks are 
reference-based transcriptome 
assembly strategies, which are 
advantageous in detecting and 
assembling transcripts of low 
abundance with their high sensitivity. 
Another bonus is that since the 
underlying genome sequence is 
already known, small gaps within the 
transcript caused by a lack of read 
coverage can be filled in using the 
reference.  
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However, in some cases a reference genome is not available, or is of low quality (with 
considerable genome misassemblies and genomic deletions). To address such problems, de novo 
transcriptome assembly strategy has been developed. Instead of mapping reads onto the reference 
genome, de novo take advantage of the redundancy of the short reads and merge these partially 
overlapping reads into complete transcripts. The common strategy de novo assemblers use is de 
Bruijn graph [13], in which reads are broken into shorter overlapping subsequences of length k 
base pairs, termed 'k-mers' (k consecutive nucleotides). This reduces the complexity associated 
with handling millions of reads to a fixed number of possible k-mers. Next, paths are traversed in 
the graph, eliminating false branch points introduced by k-mers that are not supported by reads. 
The remaining paths through the graph are then reported as individual transcripts. 
 
 More recently, the Trans-ABySS method has been developed which specialized at assembling 
non-normalized transcriptome data (with intrinsic variability in transcript abundance), by 
assembling k-mers at different k values, to achieve higher sensitivity [14].  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Ideally, a hybrid approach incorporating both the genome-independent and genome-guided 
strategies will cope with both capturing known information with high sensitivity, as well as 
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detecting novel variation. Practically, genome-independent methods require significantly greater 
computational resources compared to genome-guided methods [3]. 
 
 
 
 
 
 
 
 
 
  
 

 

 

 

3. Expression level quantification 
 
As another set of information generated by RNA-seq, the read counts are informative in 
estimating the differential expression level of the transcripts. A highly expressed transcript is 
represented by a larger RNA copy number, which will be detected by more reads in sequencing.  
 
However, a number of systematic variability complicates the correlation between expression 
levels and read counts. For instance, the length of the transcript also contributes to the number of 
reads[15]. To address this issue, the reads per kilobase of transcript per million mapped reads 
(RPKM) metric is usually used to normalize the read counts by both the length and the number of 
mapped reads of each transcript [7, 12].  
 
 
 
 
 
 
 
 
 
A second challenge is that many reads cannot be assigned to a transcript unequivocally when 
several isoforms are produced from the corresponding genes[16]. One strategy is to quantify 
expression level by counting only the reads that are aligned to a unique isoform [17]. However, 
this method will not work for the transcripts that do not contain any unique isoform. To handle 
this situation, “Isoform expression methods” are developed to achieve the maximum likelihood 
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Reads from alternatively spliced genes may be attributable to a single isoform or 
more than one isoform. Reads are color-coded when their isoform of origin is clear. 
Black reads indicate reads with uncertain origin. 'Isoform expression methods' 
estimate isoform abundances that best explain the observed read counts under a 
generative model. Samples near the original maximum likelihood estimate (dashed 
line) improve the robustness of the estimate and provide a confidence interval 
around each isoform's abundance. 

 

A hypothetical gene with two isoforms undergoing an isoform switch between two conditions is shown. The total number of 
reads aligning to the gene in the two conditions is similar, but its distribution across isoforms changes. Differential expression 
using the simplified exon union or exon intersection methods reports no changes between conditions while estimating read 
counts and expression for the individual isoforms detects both differential expression at the gene and isoform level. 

estimate (MLE) in a “likelihood function” modeling the sequencing process and assign isoform 
abundance that can best explain the reads obtained; in addition, expression quantity will also be 

modified by “sampling” 
alternative abundance 
estimates around the MLE to 
improve the robustness of this 
method for genes expressed at 
low levels [12, 18].  

 
Practically, estimating the 
differential expression for 
each isoform might not be a 
necessary goal. “Exon 
intersection method” [19], 
which counts reads mapped to 
its constitutive exons, and the 
“exon union method” [7], 
which counts all reads mapped 
to any exon in any of the 
gene's isoforms are used to 
simplify the quantification of 
gene expression 

level. However, this simplification may miss the expression difference between two samples, as 
illustrated by the hypothetical gene shown below. In other words, if the gene-level read counts are 
similar in two samples, but distributed differently among the isoforms, differential expression 
results will differ depending on the counting method used.  
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Conclusions and suggested improvements 

 

Computation in RNA-seq has developed rapidly with the improvement of sequencing technologies and 
biological questions. However, no consensus has been achieved on the best pipeline of identifying spliced 
isoforms and determining the expression levels accordingly. Extending the read length could alleviate this 
problem, since a longer read would more likely span multiple junctions and provide evidence for more 
spliced events. However, as read length continues to increase, new mapping methods will need to align 
hundreds of millions of long reads spanning a growing but uncertain number of junctions, which will be a 
daunting task.  

Here I suggest that differential read counts between exons from the same gene could indicate splicing 
events, and therefore help in interpreting isoforms. Current analysis approaches usually assemble the 
transcriptome, identifying isoforms according to spliced alignments, and then assigning abundance to 
each isoform based on read counts. Conversely, the base-resolution expression profile is potentially 
capable of revealing differential expression between two adjacent exons. If the normalized abundance of 
one exon is statistically smaller than that of the one preceding it, it is a strong implication that the 
preceding exon can be spliced together with the subsequent sequences, skipping the second exon. This 
source of splicing information can serve as complement/feedback in transcriptome reconstruction, 
especially when the mapping procedure is less sensitive than catching every possible spliced alignment.  
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